Connecting Metabolic Pathways: Sigma Factors in Streptomyces spp.
نویسندگان
چکیده
The gram-positive filamentous bacterium Streptomyces is one of the largest resources for bioactive metabolites, particularly antibiotics. Antibiotic production and other metabolic processes are tightly regulated at the transcriptional level. Sigma (σ) factors are components of bacterial RNA polymerases that determine promoter specificity. In Streptomyces, σ factors also play essential roles in signal transduction and in regulatory networks, thereby assisting in their survival in complex environments. However, our current understanding of σ factors in Streptomyces is still limited. In this mini-review, we demonstrate the roles of Streptomyces σ factors, illustrating that these serve as linkers of different metabolic pathways. Further investigations on σ factors may improve our knowledge of Streptomyces physiology and benefit exploitation of Streptomyces resources.
منابع مشابه
Complex Intra-Operonic Dynamics Mediated by a Small RNA in Streptomyces coelicolor
Streptomyces are predominantly soil-dwelling bacteria that are best known for their multicellular life cycle and their prodigious metabolic capabilities. They are also renowned for their regulatory capacity and flexibility, with each species encoding >60 sigma factors, a multitude of transcription factors, and an increasing number of small regulatory RNAs. Here, we describe our characterization...
متن کاملredD and actII-ORF4, pathway-specific regulatory genes for antibiotic production in Streptomyces coelicolor A3(2), are transcribed in vitro by an RNA polymerase holoenzyme containing sigma hrdD.
redD and actII-ORF4, regulatory genes required for synthesis of the antibiotics undecylprodigiosin and actinorhodin by Streptomyces coelicolor A3(2), were transcribed in vitro by an RNA polymerase holoenzyme containing sigma hrdD. Disruption of hrdD had no effect on antibiotic production, indicating that redD and actII-ORF4 are transcribed in vivo by at least one other RNA polymerase holoenzyme...
متن کاملConstruction and characterization of Streptomyces coelicolor A3(2) mutants that are multiply deficient in the nonessential hrd-encoded RNA polymerase sigma factors.
Previous studies showed that Streptomyces coelicolor A3(2) has four genes (hrdA, hrdB, hrdC, and hrdD) that appear to encode RNA polymerase sigma factors very similar to the sigma 70 subunit of Escherichia coli and that hrdC and hrdD could be individually disrupted without causing obvious phenotypic defects. Here, hrdA was cloned and stable null hrdA and hrdD mutants were constructed by gene re...
متن کاملBldG and SCO3548 interact antagonistically to control key developmental processes in Streptomyces coelicolor.
The similarity of BldG and the downstream coexpressed protein SCO3548 to anti-anti-sigma and anti-sigma factors, respectively, together with the phenotype of a bldG mutant, suggests that BldG and SCO3548 interact as part of a regulatory system to control both antibiotic production and morphological differentiation in Streptomyces coelicolor. A combination of bacterial two-hybrid, affinity purif...
متن کاملA study of mycobacterial transcriptional apparatus: identification of novel features in promoter elements.
Our earlier studies on transcriptional signals of mycobacteria had revealed that (i) strong promoters occur less frequently in the slowly growing pathogen Mycobacterium tuberculosis H37Rv than in the fast-growing saprophyte M. smegmatis and (ii) mycobacterial promoters function poorly in Escherichia coli. We now present evidence that RNA polymerases of M. smegmatis, M. tuberculosis, and M. bovi...
متن کامل